Oblique Survival Trees in Discrete Event Time Analysis

Małgorzata Krętowska


One of the main objectives of survival analysis is to predict the failure time that is usually considered as a continuous variable. In longitudinal studies, the data are often collected at every certain period of time, for example, monthly, quarterly, or yearly. Such data require appropriate techniques to handle the discrete time values that often have incomplete information about the failure occurrence— so-called “censored cases.” Tree-based models are common, assumption-free methods of survival prediction. In this paper, the author proposes three recursive partitioning techniques able to cope with discrete-time censored survival data, which, in contrast to already-existing models limited to univariate trees, allow splits to have a form of any hyperplane. The performance of proposed methods, expressed as a mean absolute error, was examined on the basis of both synthetic and real data sets available in the literature and compared with existing tree-based models. To demonstrate the applicability of the methods in identifying subgroups of patients with a similar survival experience and to assess the influence of covariates on the risk of failure, a Veteran’s Administration lung cancer data set was used. The results confirm proposed models to be good prediction tools for discrete-time survival data.
Author Małgorzata Krętowska (FCS / DTCS)
Małgorzata Krętowska,,
- Department of Theoretical Computer Science
Journal seriesIEEE Journal of Biomedical and Health Informatics, ISSN 2168-2194, e-ISSN 2168-2208, [1089-7771], (N/A 140 pkt, Not active)
Issue year2020
Publication size in sheets0.55
Keywords in Englishclassification tree, piecewise-linear criterion function, oblique splits, survival analysis, discrete-time survival
ASJC Classification2700 General Medicine; 3605 Health Information Management; 1305 Biotechnology; 1706 Computer Science Applications; 2208 Electrical and Electronic Engineering
Languageen angielski
Score (nominal)140
Score sourcejournalList
ScoreMinisterial score = 140.0, 25-03-2020, ArticleFromJournal
Publication indicators Scopus SNIP (Source Normalised Impact per Paper): 2016 = 1.971; WoS Impact Factor: 2018 = 4.217 (2) - 2018=4.39 (5)
Citation count*
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Are you sure?